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Abstract Positronium (Ps) binding energies for complexes
of Ps and atoms with open shell electrons, PsX (X=B, C,
N, and O), are calculated using the multireference singly and
doubly excited configuration interaction (MRSDCI) method.
The effectiveness of this method for the complexes is veri-
fied. The MRSDCI calculations are carried out with a fro-
zen-core approximation so as to incorporate only the most
important valence correlation effects. Many-body correla-
tion effects and contributions from higher angular momentum
orbitals are estimated by extrapolation techniques. The result-
ing Ps binding energies agree well with the results of diffusion
Monte Carlo simulations by Bressanini et al. (J Chem Phys
108:4756,1998) and by Jiang and Schrader (Phys Rev Lett
81:511332,1998). For PsO the Ps binding energy obtained
by Jiang and Schrader is about 1.8 times larger than that of
Bressanini et al.; the present calculated value is close to that
of Jiang and Schrader.

Keywords Positron-atom complex · PsB-PsO · MRSDCI ·
Positronium binding energy · Positron ionization energy

1 Introduction

Positron and positronium chemistry is an area of radiation
chemistry, where the interaction of positrons and matters is
studied. In particular, the study of bound states of positrons
and atoms, molecules, or their ions is one of important sub-
jects in positron and positronium chemistry [1–4]. We refer to
these bound states as positron–atom complexes or positron–
molecule complexes. There have been many experimental
and theoretical studies of these complexes.

The last decade has seen high quality theoretical calcula-
tions for several positron-atom complexes and positron–mol-
ecule complexes, and the positronium (Ps) binding energies
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have been evaluated accurately [5]. The Ps binding energy of
PsX is calculated by

BE = EPs + EX − EPsX, (1)

where EPs, EX, and EPsX are the total energies for Ps, X, and
PsX, respectively. The Ps binding energy can also be esti-
mated using the electron affinity (EA) of X and the positron
ionization energy (PI) of PsX as follows :

BE = EPs + (EX − EX−) + (EX− − EPsX)

= EPs + EA + PI. (2)

Accurate determination of Ps binding energies requires wave
functions which can provide accurate electron affinities and
positron ionization energies. To calculate accurate positron
ionization energies, positron–electron correlations must be
incorporated. In fact, it has been shown that the Hartree–
Fock (HF) method provides negative Ps binding energies
[6,7].

Computational methods with explicitly correlated func-
tions, e.g., Hylleraas-type functions or explicitly correlated
Gaussians (ECG), are best suited to incorporation of the posi-
tron–electron correlation effects. Although such methods are
very powerful and are suitable for positron–atom complexes,
they are not practical for many-body systems because of their
heavy computational cost. Mitroy et al. [5] have applied the
stochastic variational method (SVM) with ECG to many-
electronic positron–atom complexes with one or two valence
electrons using a model potential. For positron–atom com-
plexes with many valence electrons, density functional theory
(DFT), quantum Monte Carlo (QMC), or configuration inter-
action (CI) methods have been applied. DFT has recently
grown into a method which efficiently calculates accurate
energy values of atoms or molecules. However, there are only
a few DFT calculations for positron–atom complexes [8–10].
QMC is a method which stochastically solves the Schröding-
er equation and is capable of giving accurate results. The
diffusion Monte Carlo (DMC) method, which is a variant
of QMC, has been employed by Schrader and co-workers
[11–13] and by Bressanini et al. [14].

The CI is a standard method which is extensively used for
calculating atomic or molecular wave functions because of
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its simplicity. CI calculations of many-electronic positron–
atom complexes have been carried out by the present author
[15–17]. Unfortunately, the convergence of CI expansions is
very slow, because the effects of the higher partial wave com-
ponent of the positron–electron pair and of the many-body
excitation are large. The CI method often gives unsatisfactory
results owing to such slow convergence. It would neverthe-
less be possible to obtain good results with the help of an
appropriate extrapolation procedure.

Our previous work [17] applied the multireference sin-
gly and doubly excited CI (MRSDCI) method to positro-
nium halides, and showed that the many-body correlation
effects contribute greatly to the results. The present work
investigates the effectiveness of the MRSDCI method for pos-
itron–atom complexes with open shell electrons. We apply
the MRSDCI method to the ground states of the positron–
atom complexes PsB (2,3 P), PsC (3,4S), PsN (2,3 P), and PsO
(1,2 P), the neutral atoms B (2 P), C (3 P), N (4S), and O (3 P),
and their anions B− (3 P), C− (4S), N− (3 P), and O− (2 P),
and give Ps binding energies and positron ionization energies
for these positron-atom complexes. These species have previ-
ously been studied using HF calculation by Patrick and Cade
[7], DFT by Harrison [8] and Kanhere et al. [9], and DMC by
Jiang and Schrader [13] and Bressanini et al. [14]. PsN has
been studied by HF only. The present MRSDCI calculations
use a frozen-core approximation so as to incorporate only
the most important valence correlation effects. We estimate
the full CI (FCI) limits of the total energies by extrapolation
against the weight of reference space (wref ). In addition, by
analyzing energy lowering with respect to angular momen-
tum (λ), we estimate the contributions to the total energies
from higher angular momentum orbitals. Hereafter, we refer
to the effect of the higher angular momentum orbitals as the
‘higher λ effect.’

The next section explains the computational method,
which is the same as in the previous work [17]. The third sec-
tion summarizes the results of the Ps binding energies and
positron ionization energies for PsB, PsC, PsN, and PsO,
and discusses them in comparison with the works of other
researchers.

2 Computational method

For atomic systems, Slater- or Gaussian-type basis sets are
usually employed. Unfortunately, their linear dependence of-
ten disturbs the calculations. In the present work we use the
B-spline set which is one of piecewise polynomials, because
this set is free from computational linear dependence and is
very flexible. The present basis set consists of N K th-order
B-splines [18,19] on a knot sequence defined on an interval
[ 0, R ]. A knot sequence was used with endpoints of K -fold
multiplicity :

0, R1, R1(1 + β), R1(1 + β + β2), · · · , R, (3)

where R1 is the initial interval and β is the parameter char-
acterizing the distribution of the knots. Here, β is chosen to

satisfy the following condition :

R = R1(1 + β + β2 + · · · + βN−K+2), (β ≥ 1). (4)

Values used were N = 40, R = 40, and K = 9. The R1 val-
ues were optimized by singly and doubly excited CI (SDCI)
calculations with the HF reference configuration in the spd f -
space for each system individually. Since the B-spline set is
very flexible, all atomic radial orbitals of each system were
expanded using a common B-spline set regardless of the sym-
metry of the atomic orbitals.

Configuration state functions were constructed using the
natural orbitals (NOs) with λ up to 8. The NOs used were gen-
erated by a series of MRSDCI calculations with reference
spaces consisting of principal configurations of the SDCI
wave functions (a ‘minimal reference space’). The minimal
reference configurations are listed in Table 1.

First, MRSDCI calculations were performed with the HF
orbitals in the spd-space, to obtain spd-NOs. Subsequently,
f -NOs were generated by MRSDCI calculations with the
spd-NOs. The NOs with higher angular momentum than f
were generated in the same way, step by step. To reduce the
computational cost, those NOs whose occupation number
was less than 5.0 × 10−7 were truncated at each step.

To estimate the FCI limits and the higher λ effects for the
total energies, a further series of MRSDCI calculations was
performed, increasing the reference configurations which were
selected for the largest weight in the previous CI wave func-
tions. By analyzing the convergence patterns of the total ener-
gies (ECI) provided by these calculations with respect to wref
and λ, it was possible to estimate the FCI limits and the higher
λ effect.

Table 1 Minimal reference configurations

System PsX X− X

X = B
1s22s22p21s+ 1s22s22p2 1s22s22p
+ 2s1s+ → 2p2p+ + 2s2 → 2p2 + 2s2 → 2p2

+ 2p1s+ → 3s2p+, 3d2p+ + 2p2 → 3p2 + 2s → 3d
+ 2s2 → 2p2 + 2s2p → 3s3p
+ 1s+ → 3d+ + 2s → 3d
+ 2s → 3d

X = C
1s22s22p31s+ 1s22s22p3 1s22s22p2

+ 2s1s+ → 2p2p+ + 2p2 → 3p2 + 2s2 → 2p2

+ 2p1s+ → 3s2p+, 3d2p+ + 2s2p → 3s3p + 2s → 3d
+ 2p2 → 3p2 + 2s → 3d
+ 2s2p → 3s3p
+ 2s → 3d

X = N
1s22s22p41s+ 1s22s22p4 1s22s22p3

+ 2p2 → 3p2 + 2p2 → 3p2 + 2s → 3d
+ 2p → 3p + 2p → 3p

X = O
1s22s22p51s+ 1s22s22p5 1s22s22p4

+ 2p1s+ → 3d2p+ + 2p2 → 3p2 + 2s → 3d
+ 2p2 → 3p2 + 2p → 3p

The subscript ‘+’ stands for a positronic orbital
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Table 2 Results of MRSDCI with minimal reference configurations.
NCI, ECI, and �ε respectively denote the dimension of the configura-
tion interaction (CI) wave function, total energy, and loss of total energy
due to the natural orbital (NO) truncation procedure

System NCI ECI (au) �ε (au)

B 930 −24.602152 −0.000076
B− 6,977 −24.612035 −0.000054
PsB 88,539 −24.819986 −0.000152

C 3,025 −37.788909 −0.000118
C− 6,819 −37.835132 −0.000111
PsC 67,493 −38.047655 −0.000207

N 1,940 −54.528075 −0.000167
N− 21,763 −54.517939 −0.000179
PsN 145,346 −54.723448 −0.000248

O 11,867 −74.998715 −0.000280
O− 37,013 −75.050242 −0.000283
PsO 289,549 −75.266345 −0.000399

With ECI as a function of wref , the FCI limits of ECI were
estimated by extrapolating ECI to wref = 1. To do this, the
convergence patterns of ECI+Q and Eav were also analyzed.
Here, ECI+Q is ECI plus the Davidson correction [20], and
Eav = 1

2 (ECI + ECI+Q).
The higher λ effect for the total energies was also esti-

mated by extrapolating the energy contributions due to the
respective λ-NOs to λ → ∞. To treat the systems on equal
footing, we extrapolated the total energies to λ → ∞ using
the results of the largest-scale CI calculations with approx-
imately the same wref . The energy contribution (�Eλ) was
fitted by the following relation with two parameters a and b:

−�Eλ = aλ−b. (5)

Fig. 1 Convergence of configuration interaction energies for PsC, C, and C− with respect to the weight of the reference space

The contribution from the NOs having angular momentum
greater than 8 was estimated as − ∑∞

λ=9 �Eλ. This extrapo-
lation was carried out by assuming linearity of the contribu-
tion pattern. We finally obtained the FCI limits including the
higher λ effect.

The HF calculations with the B-spline set were carried out
using our atomic self-consistent field program code based on
the algorithm of Roothaan and Bagus [21,22]. All CI cal-
culations were performed by the program ATOMCI [23,24]
modified for atomic systems containing positrons.

3 Results and discussion

Table 2 summarizes the total energies provided by MRSDCI
with minimal reference space, together with their losses due
to the NO truncation. The energy loss is of the order ∼0.002–
0.003 eV. To reduce the energy loss, it is desired that the
NO truncation threshold be reduced. However, the reduc-
tion of the truncation threshold increases the computational
cost greatly. The present threshold provides a good balance
between the computational cost and accuracy.

We estimated the FCI limits of the total energies by ana-
lyzing the convergence patterns of the total energies against
wref . As an example, the energies ECI, ECI+Q, and Eav for
PsC, C, and C− are plotted against wref in Fig. 1. ECI at
wref = 1 is the FCI limit of the total energy. As shown in
Fig. 1, wref values of CI wave functions for PsC are much
smaller than unity relative to those for C and C−. This sit-
uation appears also in the other systems. Thus, it is often
difficult to accurately determine the FCI limit for positron-
atom complexes, i.e., to find a point where ECI and ECI+Q
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Fig. 2 Contributions to the total energies for PsC, C, and C− from the respective λ orbitals

meet at wref = 1. As we showed previously [17], since the
Eav curve tends to rapidly approach a constant value, Eav is
very useful for estimating the FCI limit.

The contributions to the total energies from the NOs with
larger angular momentum than 8 were estimated by extrap-
olation. Figure 2 shows the contribution to the total energies
for PsC, C, and C− from the respective λ-NOs on a log-log
scale. The energy contribution converges linearly at λ ≥ 5.
Figure 2 also shows that the energy convergence for PsC is
slower than that of C− and C. This means that the effects of
the higher partial wave components of the positron–electron
pair are important. The FCI limits and the higher λ contribu-
tions for the total energies are summarized in Table 3. The
convergence pattern for the other systems is similar to that
for the species of carbon.

Table 4 summarizes the Ps binding energies and positron
ionization energies for PsX and the electron affinities of X,
together with results of other researchers. The positron ion-
ization energies and the electron affinities were used to ana-
lyze their contribution to the Ps binding energies by Eq. (2).
The higher λ corrected FCI limits of these energies constitute
the present results.

All the present electron affinities are in good agreement
with the measured values [25]. Accordingly, the precision
of the present Ps binding energies depends almost only on
that of the positron ionization energies. The higher λ effect
for the electron affinities is small; the values are 0.004 eV or
less. The many-body correlation effect is also small except
for nitrogen.

Table 3 Full CI (FCI) limits (EFCI) and higher λ contributions (Eλ>8)
for total energies (in au)

System EFCI Eλ>8

B −24.60226 −0.00002
B− −24.61243 −0.00004
PsB −24.83056 −0.00883

C −37.78950 −0.00005
C− −37.83578 −0.00008
PsC −38.05362 −0.00380

N −54.52974 −0.00011
N− −54.52634 −0.00019
PsN −54.74961 −0.00415

O −75.00406 −0.00026
O− −75.05718 −0.00038
PsO −75.28127 −0.00231

The present positron ionization energies for PsB, PsC,
PsN, and PsO are 6.176, 6.029, 6.183, and 6.150 eV, respec-
tively; these are almost the same values regardless of systems.
The higher λ effect greatly increases the positron ionization
energies; the increments for PsB, PsC, PsN, and PsO are
respectively 0.241, 0.121, 0.108, and 0.052 eV. Increase due
to the many-body effect is also large. The increases for PsB,
PsC, PsN, and PsO are 0.276, 0.145, 0.218, and 0.270 eV,
respectively. Thus, in order to calculate accurate positron
ionization energies, it is important to incorporate not only
the higher λ effect but also the many-body effect.
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Table 4 Electron affinity (EA) of X atom, positron ionization energies
(PI) and Ps binding energies (BE) for PsX (in eV)

Method Reference EA PI BE

X = B
HF [7] −0.268 3.642 −3.428
DFT [8] −0.144 3.519 −3.207
DFT [9] 0.164 9.583 2.662
DMC [14] 0.351 6.01 −0.44
MRSDCIa Present work 0.269 5.659 −0.874
FCI limit Present work 0.277 5.935 −0.590
FCI limit + higher λ Present work 0.277 6.176 −0.350
Experiment [25] 0.277

X = C
HF [7] 0.550 4.141 −2.112
DFT [8] 0.991 4.028 −1.784
DFT [9] 1.294 9.837 4.328
DMC [14] 1.342 5.940 0.479
MRSDCIa Present work 1.258 5.783 0.238
FCI limit Present work 1.259 5.928 0.384
FCI limit + higher λ Present work 1.260 6.029 0.486
Experiment [25] 1.263

X = N
HF [7] −2.149 4.419 −4.533
MRSDCIa Present work −0.320 5.592 −1.486
FCI limit Present work −0.092 6.075 −0.820
FCI limit + higher λ Present work −0.090 6.183 −0.710
Experiment [25] −0.072

X = O
HF [7] −0.535 4.716 −2.622
DFT [8] 0.267 4.584 −1.952
DFT [9] 2.751 10.841 9.564
DMC [14] 1.374 5.940 0.479
DMCb [13] 1.38 6.26 0.84
MRSDCIa Present work 1.402 5.880 0.480
FCI limit Present work 1.445 6.098 0.740
FCI limit + higher λ Present work 1.449 6.150 0.796
Experiment [25] 1.461

aCalculation with minimal reference space
bUncertainties of EA and BE are ±0.05 and ±0.18 eV, respectively

The present Ps binding energies for PsB, PsC, PsN, and
PsO are respectively −0.350, 0.486, −0.710, and 0.796 eV.
The positive Ps binding energies indicate that PsC and PsO
exist stably. This result is consistent with the DMC simula-
tions performed by Jiang and Schrader [13] and by Bressa-
nini et al. [14]. For PsN, theoretical calculation has been
performed only by the HF method [7] so far, and has given
negative value. The present Ps binding energy for PsN is also
negative Ps binding energy. If the positron ionization energy
of PsN exceeds ∼ 6.9 eV, the Ps binding energy of PsN will
be positive. However, since this value is too large relative to
the other systems, PsN will not exist stably. The contribu-
tions of the higher λ effect and the many-body effect to the
Ps binding energies are large. As seen above, these effects
mainly result from the positron ionization energies. For PsN,
the many-body effect of the electron affinity considerably
contribute to the Ps binding energy.

Let us compare the present Ps binding energies, positron
ionization energies, and electron affinities with the results of

DMC and DFT. In particular, it is expected that DMC simu-
lations give reliable results. For example, DMC Ps BEs for
PsH obtained by Jiang and Schrader [27] and by Bressanini
et al. [26] are in excellent agreement with accurate varia-
tional calculations [28]. The DMC simulations for PsB and
PsC were carried out by Bressanini et al. [14] only. For PsC,
the present Ps binding energy is in good agreement with the
DMC result, but the present positron ionization energy is
larger than that of the DMC by 0.089 eV. The poor result for
the positron ionization energy would be ascribed to the error
of the carbon electron affinity provided by the DMC. The
DMC overestimates the carbon electron affinity by 0.08 eV.
For PsB, the present Ps binding energy and positron ioniza-
tion energy are larger than those of the DMC by 0.09 and
0.17 eV, respectively. This error of positron ionization en-
ergy is also mainly due to overestimation of the DMC elec-
tron affinity for the boron atom. If DMC simulations of the
anions that provide the exact electron affinities were carried
out, the DMC positron ionization energies for PsB and PsC
would be 6.09 and 6.019 eV, respectively. These values are
close to the present positron ionization energies.

For PsO, Jiang and Schrader [13] and Bressanini et al.
[14] have made DMC simulations. However, the Ps binding
energy found by Jiang and Schrader is about 1.8 times larger
than that of Bressanini et al. The difference in Ps binding
energies between both DMC simulations is 0.36 eV. The pres-
ent Ps binding energy (0.796 eV) is quite close to that of Jiang
and Schrader (0.84 eV). Both DMC electron affinities for the
oxygen atom are almost the same, and are smaller than the
experimental value [25] by about 0.08 eV. This means that
DMC positron ionization energies include the error of about
0.08 eV at least. The present positron ionization energy for
PsO (6.150 eV) is smaller than that of Jiang and Schrader
(6.26 eV) by ∼ 0.11 eV. If DMC simulation of the oxygen
anion was made so as to provide the exact electron affinity,
then the DMC positron ionization energy for PsO would be
6.18 eV; this value is close to the present positron ionization
energy. On the other hand, the positron ionization energy of
Bressanini et al. is slightly smaller than the FCI limit of the
energy. Since the FCI limit is smaller than the exact value due
to the higher λ effect, the corresponding ionization energy is
obviously smaller than the exact value. Therefore, we can
conclude that the error in the Ps binding energy of PsO given
by Bressanini et al. is caused by failure to account fully for
the positron–electron correlation.

Density functional theory calculations for PsB, PsC, and
PsO have been performed by Harrison [8] and Kanhere et al.
[9]. The energies provided by Harrison [8] are similar to the
HF results. Kanhere et al. [9] have carried out the DFT calcu-
lation with correlation effects and have obtained very large
Ps binding energies. In contrast to the negative Ps binding
energy of PsB obtained by CI and DMC, that of Kanhere et
al. [9] is positive. The result of Kanhere et al. [9] seems to
be unrealistic. For the Ps binding energies of PsC and PsO,
the DFT values given by Kanhere et al. [9] are a factor 8.9
and 12.0 times larger than the present results. This is mainly
due to the error in positron ionization energies (∼ 10 eV).
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Their errors are about 1.6–1.8 times larger than ours. The
positron–electron correlation is overestimated. If incorpora-
tion of the positron–electron correlation is improved, DFT
method will grow into a powerful method for atomic and
molecular systems with positrons.

4 Summary

We have carried out MRSDCI calculations for positron–atom
complexes with open shell electrons, PsB, PsC, PsN, and
PsO, and estimated the Ps binding energies and the positron
ionization energies with the help of extrapolation techniques.
To obtain these accurate values, it has been shown that incor-
poration of the many-body correlation effect and the higher
λ effect are important. Our Ps binding energies agree well
with DMC values obtained by Jiang and Schrader and by
Bressanini et al. However, the Ps binding energy for PsO con-
siderably differs between both DMC simulations. We have
obtained the Ps binding energy which is quite close to the
result of Jiang and Schrader. The positron ionization energy
for the present complexes is almost the same, regardless of
the system. It follows that the Ps binding energy is deter-
mined mainly by the electron affinity of the corresponding
neutral atom. From this ground, we can predict that com-
plexes of Ps and atoms having large electron affinity, such
as sulphur, selenium, platinum, gold, should be stable. The
MRSDCI method will reveal the stability of such systems.
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